Comparison of estimation techniques in joint uncertainty decoding for noise robust speech recognition
نویسندگان
چکیده
Model-based joint uncertainty decoding (JUD) has recently achieved promising results by integrating the front-end uncertainty into the back-end decoding by estimating JUD transforms in a mathematically consistent framework. There are different ways of estimating the JUD transforms resulting in different JUD methods. This paper gives an overview of the estimation techniques existing in the literature including data-driven parallel model combination, Taylor series based approximation and the recently proposed second order approximation. Application of a new technique based on the unscented transformation is also proposed for the JUD framework. The different techniques have been compared in terms of both recognition accuracy and computational cost on a database recorded in a real car environment. Experimental results indicate the unscented transformation is one of the best options for estimating JUD transforms as it maintains a good balance between accuracy and efficiency.
منابع مشابه
Joint Uncertainty Decoding for Robust Large Vocabulary Speech Recognition
Standard techniques to increase automatic speech recognition noise robustness typically assume recognition models are clean trained. This “clean” training data may in fact not be clean at all, but may contain channel variations, varying noise conditions, as well as different speakers. Hence rather than considering noise robustness techniques as compensating clean acoustic models for environment...
متن کاملIssues with uncertainty decoding for noise robust speech recognition
Recently there has been interest in uncertainty decoding for robust speech recognition. Here the uncertainty associated with the observation in noise is propagated to the recogniser. By using appropriate approximations for this uncertainty, it is possible to obtain efficient implementations during decoding. The aim of these schemes is to obtain performance which is close to that of a modelbased...
متن کاملIssues with uncertainty decoding for noise robust automatic speech recognition
Interest is growing in a class of robustness algorithms that exploit the notion of uncertainty introduced by environmental noise. The majority of these techniques share the property that the uncertainty of an observation due to noise is propagated to the recogniser, resulting in increased model variances. Using appropriate approximations, efficient implementations may be obtained, with the goal...
متن کاملUncertainty Decoding for Noise Robust Automatic Speech Recognition
This report presents uncertainty decoding as a method for robust automatic speech recognition for the Noise Robust Automatic Speech Recognition project funded by Toshiba Research Europe Limited. The effects of noise on speech recognition are reviewed and a general framework for noise robust speech recognition introduced. Common and related noise robustness techniques are described in the contex...
متن کاملOn the Estimation and Use of Feature Reliability Information for Noise Robust Speech Recognition
In this paper we present an Uncertainty Decoding rule which exploits feature reliability information and interframe correlation for noise robust speech recognition. The reliability information can be obtained either from conditional Bayesian estimation, where speech and noise feature vectors are tracked jointly, or by augmenting conventional point estimation methods with heuristics about the es...
متن کامل